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A population of coupled nonlinear oscillators may age in such a way that the fraction of non-self-oscillatory
elements increases. Following our previous paper �Phys. Rev. Lett. 93, 104101 �2004��, we study the effect of
aging in this sense mainly for globally coupled Stuart-Landau oscillators with the emphasis on the structure of
the �K , p� phase diagram, where K is the coupling strength and p is the ratio of inactive oscillators. In addition
to the aging transition reported previously, such a diagram is shown to be characterized by a hornlike region,
which we call a “desynchronization horn,” where active oscillators desynchronize to form a number of clusters,
provided that uncoupled active oscillators are sufficiently nonisochronous. We also show that desynchroniza-
tion in such a region can be captured as a type of diffusion-induced inhomogeneity based on a “swing-by
mechanism.” Our results suggest that the desynchronization horn with some curious properties may be a fairly
common feature in aging systems of globally and diffusively coupled periodic oscillators.
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I. INTRODUCTION

Coupled nonlinear oscillators appear in a variety of areas
in science and technology. In particular, the behavior of their
large populations has been one of the central research sub-
jects since Winfree’s pioneering work in the late 1960’s �1�.
This is because detailed knowledge about the dynamics and
statistical-mechanical properties of such large-scale dynami-
cal systems is indispensable in those areas. For example, the
concept of macroscopic synchronization established by quite
a few theoretical studies �2–5� plays a crucial role in explain-
ing a rich variety of coherent activities of coupled oscillatory
elements observed in diverse areas. This variety includes, on
the one hand, many important activities of living organisms
to maintain life, e.g., heart contraction, peristaltic motion of
gastrointestinal tracts, circadian rhythms �6�, and visual in-
formation processing in mammalian brains �7� and, on the
other hand, synchronous behavior of myriads of inorganic
systems treated in more conventional physics and engineer-
ing such as coupled Josephson junctions and coupled elec-
trochemical oscillators �8–11�.

As exemplified above, biological or physiological systems
are often regarded as large populations of coupled oscilla-
tors. However, needless to say, any living system cannot
avoid some form of deterioration which may be caused by
aging and accidental events such as disease. If the level of
such deterioration becomes higher than a certain critical
threshold, the function of a physiological oscillator system
will be lost and its host organism may be brought to a serious
illness or death. It is therefore important to ask how robust
the activity or performance of the system can be against such
deterioration. This problem is equally important in techno-
logical contexts, where it is crucial to design robust systems.
Nevertheless, there have been few studies devoted to it so
far.

Motivated by this problem, in a previous paper �12� �see
also Ref. �13��, the authors discussed the behavior of glo-
bally and diffusively coupled nonlinear oscillators such that
some of them are active �i.e., self-oscillatory� oscillators
while others are inactive �i.e., non-self-oscillatory� oscilla-
tors. In this work, as well as the present, the ratio of the
latter, denoted by p, stands for the level of aging or deterio-
ration of the system, and we deal with equilibrium properties
of the system for each fixed value of p. Hence, in view of the
context of aging in its literal sense, our work will correspond
to studying the slow-progress limit of aging. We consider
this as a convenient starting point for our study. In an earlier
paper �12�, it was found that as the ratio p exceeds a critical
value, pc, the system loses its oscillatory activity to fall in a
steady state. What is remarkable is that the critical ratio pc
becomes less than unity when the strength of coupling
among oscillators K is larger than a threshold value Kc. Such
a transition between activity and inactivity of the population
at p= pc�1 was called an aging transition. The value of pc
tends to decrease for increasing K in the range K�Kc. As
pointed out in Ref. �12�, one important implication of this
result is that although strong coupling among oscillators gen-
erally helps to maintain the system’s coherence, it can also
spoil the robustness of the system’s activity against aging or
deterioration in the sense considered here. This might sug-
gest the possibility that the intensity of coupling in living
coupled-oscillator systems is tuned to an optimal value. The
aging transition is a critical phenomenon, for which a natural
order parameter is

M � ���Xc − �Xc��2� , �1�

where Xc is the centroid of the state vectors of all oscillators
and the brackets mean long time average. It was also shown
in Ref. �12� that this order parameter, which measures the
oscillatory activity of the system as a whole, obeys some
universal scaling laws near the aging transition and also near
the critical point, i.e., �K , p�= �Kc ,1�. It is important to note
that these results do not depend on whether active oscillators
are periodic or chaotic �12,13�. Quite recently, our frame-
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work of aging study for coupled oscillators has been applied
to neuronal models �14�.

In this paper, following the earlier, we investigate the ef-
fect of aging on the dynamics of globally and diffusively
coupled oscillators with the emphasis on the desynchroniza-
tion of active oscillators. It was already reported �12,13� that
in some region of the �K , p� phase diagram, active oscillators
split into a number of clusters, though all inactive oscillators
empirically seem to be synchronized everywhere in the
phase diagram. We shall elucidate the nature of such desyn-
chronization or clustering analytically as well as numerically.
For brevity, we focus on the case that active elements of the
system are identical limit-cycle oscillators. Moreover, we
only deal with the scalor type of diffusive coupling. The
paper is organized as follows. In Sec. II, which constitutes
the main body of this article, the case of coupled Stuart-
Landau oscillators will be discussed in detail. The Stuart-
Landau system is a normal form describing dynamics near
Hopf bifurcation �2�. We therefore expect that the results of
this section will be applicable at least to populations of os-
cillators near Hopf bifurcation. Some of the results of this
section were reported elsewhere �15�. In Sec. III, we will
examine the behavior of populations of other oscillators to
check if the results of Sec. II can be in fact more general.
Finally, in Sec. IV, this paper will be summarized with dis-
cussion about the significance of our results and remaining
problems. All numerical simulations reported below were
performed with the fourth order Runge-Kutta method with
time step 0.1 or smaller.

II. COUPLED STUART-LANDAU OSCILLATORS

This section, which is the main part of this article, is
devoted to a study of the behavior of the following dynami-
cal system �12�:

ż j = �� j + i��zj − �1 + ic2�	zj	2zj +
K

N


k=1

N

�zk − zj� �2�

for j=1, . . . ,N, where the overdot means differentiation with
respect to time t, zj is the complex amplitude of the jth
oscillator, � j is a parameter specifying the distance from
Hopf bifurcation, � is the natural frequency, c2 is a param-
eter controlling the degree of nonisochronicity �i.e., ampli-
tude dependency of the angular frequency�, and K�0 is the
coupling strength. For K=0, the jth element exhibits periodic
oscillation if � j �0, and settles down at the trivial fixed point
zj =0 if � j �0. We assume that aging of the system proceeds
in such a way that an active oscillator with � j =a�0 turns
inactive with � j =−b�0, where both a and b are parameters.
The system size N will be supposed to be large enough to
enable us to regard the ratio of inactive elements p virtually
as a continuous variable. For convenience, we set the group
of active elements to j� �1, . . . ,N�1− p���Sa and that of
inactive elements to j� �N�1− p�+1, . . . ,N��Si. The p=0
version of Eq. �2� with K either complex or real was studied
in a number of papers �16–21� and shown to exhibit a variety
of behaviors such as synchronization, incoherence, cluster-
ing, and chaos.

A. Phase diagrams

Figure 1 shows phase diagrams with respect to parameters
K and p for several values of c2. The simulation results dis-
played therein were obtained for a random initial condition
taken in the range −1�Re zj , Im zj �1 �j=1, . . . ,N�. Note
that as can be seen by taking complex conjugate of Eq. �2�,
this kind of phase diagram does not depend on the sign of c2.
In each panel, we find both active and inactive regions: In
the former, all elements of the system oscillate with ampli-
tudes which are larger for active elements than for inactive
elements, while in the latter, the system is in the death state
with zj =0 for all j. The aging transition occurs at the bound-
ary between these regions, which is given, irrespective of c2,
by �12�

p =
a�K + b�
�a + b�K

�K � a� �3�

as drawn in the panels of Fig. 1. Hence, the critical ratio pc is
given by the right-hand side of Eq. �3� for K�a, whereas
pc=1 for K�a. This result implies that Kc=a in the present
model. Moreover, we see that for K�Kc, pc monotonically
decreases for increasing K. As mentioned in the previous
section, this behavior of pc implies that as the interaction is
intensified, the population of coupled identical Stuart-Landau
oscillators becomes more and more fragile against aging.
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FIG. 1. Phase diagrams for several values of c2: �a� −0.5, �b� −2,
�c� −3, �d� −10. The colored regions are where the active group of
the system with N=1000, a=2, b=1 was numerically found to be
desynchronized; the state is either periodic �dark� or nonperiodic
�gray�. The thin dotted curve lying at the right upper corner of each
panel is the aging transition line given by Eq. �3�, above which the
death state is stable. The dashed, solid, and dotted curves converg-
ing at �K , p�= �2,1� show theoretical curves corresponding to KSN,
KH, and KSC, respectively �see the text for details�.
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In Fig. 1 we also find that for 	c2	 large, the active region
is divided into two regions: One is the region where both
active and inactive groups of the population synchronize
within each and the other is the one in which only the group
of active elements desynchronize to split into more than one
cluster. Although the latter region slightly varies from one
initial condition to another, its basic shape reminiscent of a
horn converging at �K , p�= �Kc ,1� remains qualitatively the
same for random initial conditions of the type chosen here.
Inspired by its characteristic shape, we call such a region a
“desynchronization horn.” In fact, according to our numeri-
cal results, the state in which the active group, as well as the
inactive, is synchronized seems to be stable everywhere in
the checked region of the phase diagram �up to K=2Kc�.
Each numerically found desynchronized horn should there-
fore be part of a probably bigger region where both the per-
fectly synchronized state and a number of desynchronized
states stably coexist in phase space. We remark that as Fig. 1
indicates, the horn grows for increasing 	c2	. Hereafter, we
will use the term “desynchronization” and other related ones
in order to mean the desynchronization of the active group
for simplicity.

Let us now check the behavior of the system in more
detail. Figure 2 displays a pair of examples of time-series
data in a desynchronized horn. Desynchronized solutions
tend to be periodic near the right boundary and quasiperiodic
near the left boundary. In either case, the active group typi-
cally consists of two clusters such that one of them is over-
whelmingly larger in size than the other. Figure 2�a� shows
an example of quasiperiodic solution found near the left
boundary of a desynchronized horn, while Fig. 2�b� is de-
voted to an example of periodic two-cluster solutions ob-
served near the right boundary. The variety of solutions
found away from the boundaries is more complex and de-
pends on initial conditions. Figure 3 presents an example of
cluster structures of the active group over a whole range of K
across a horn for a fixed value of p. This figure shows that
the number of clusters in the active group tends to be much
larger near the center than near the boundaries of the range.
Moreover, we found that for some values of K in the central
region, the configuration of the active group failed to become
stationary within the time interval used for computation
�104�. It seems very difficult to explain all the aspects of this
complex clustering dynamics �5,22,23�, but some features of

the horn as well as the mechanism of the appearance of such
inhomogeneous states can be theoretically approached, as
discussed in the coming subsections.

B. Two-cluster desynchronization in the small size-ratio limit

In this subsection, we analytically study the behavior of
the system in the desynchronization horn by restricting our-
selves to the simplest category of clustering of the active
group. Let us start by supposing that the active group con-
sists of two synchronized clusters with size ratio r :1−r �0
�r�1/2�, while the inactive group is synchronized. We
then have totally three clusters with sizes r�1− p�N, �1−r�
	�1− p�N, and pN. Writing their complex amplitudes u ,v ,w
in the same order, we obtain from Eq. �2�

u̇ = �a − K + Kr�1 − p��u − �1 + ic2�	u	2u

+ K�1 − r��1 − p�v + Kpw , �4�

v̇ = �a − K + K�1 − r��1 − p��v − �1 + ic2�	v	2v

+ Kr�1 − p�u + Kpw , �5�

-1

0

1

2

1000 1005 1010 1015 1020

R
e(

z j
)

time

(a)

active (cluster 1)
active (cluster 2)

inactive

-1

0

1

2

1000 1005 1010 1015 1020

R
e(

z j
)

time

(b)

active (cluster 1)
active (cluster 2)

inactive

FIG. 2. Examples of time series data for N=1000, c2=−3, a=2, b=1, p=0.4. Here we have three synchronized clusters: the larger active
�cluster 1�, the smaller active �cluster 2�, and the inactive. �a� K=1.32 �quasiperiodic state; the size of cluster 2 is 2�. �b� K=1.82 �periodic
state; the size of cluster 2 is 27�.
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FIG. 3. Cluster structures of numerically found solutions for a
random initial condition and N=1000, c2=−3, a=b=1, p=0. Each
segment of a vertical bar shows the size ratio of a cluster smaller
than the main cluster, which is not shown here. These segments are
placed in the order of their sizes, from top to bottom. Almost black
regions correspond to the existence of a large number of small
clusters. A cluster here is defined to be a collection of oscillators
less than 10−5 apart from one oscillator at t=10 000. The behavior
of 
 defined in Eq. �41� is also shown.
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ẇ = �− b − K + Kp�w − �1 + ic2�	w	2w + Kr�1 − p�u

+ K�1 − r��1 − p�v , �6�

where and hereafter the natural frequency � is set to be zero
without loss of generality. By taking the limit r→0, these
equations are simplified as

u̇ = �a − K�u − �1 + ic2�	u	2u + K�1 − p�v + Kpw , �7�

v̇ = �a − Kp�v − �1 + ic2�	v	2v + Kpw , �8�

ẇ = �− b − K + Kp�w − �1 + ic2�	w	2w + K�1 − p�v . �9�

As we see in these equations, both v and w evolves indepen-
dently of u, which is why this limit is tractable. As a matter
of fact, their equations are nothing but those for the synchro-
nized state. In this subsection, we concentrate on the reduced
system �7�–�9�. The results obtained below will be used to
approximately describe two-cluster states of the active group
with 0�r�1, for example, when the size of the smaller
active cluster is O�Ns� with s�1, since the system size N is
assumed to be large in this paper.

In the following, the behavior of the reduced system
�7�–�9� will be discussed separately for the three cases: p
=0, 0�1− p�1, and the rest. The main results for case �a�
below were already reported in Ref. �15�.

�a� The case of p=0. In this case, the population is com-
posed only of identical active elements. For simplicity, we
set a=1. This simplification can be achieved without damag-
ing the generality of our argument by the transformations

zj → �azj, t → t/a, K → Ka . �10�

We first note that in this case, v obeys the equation of the
uncoupled active oscillator, i.e.,

v̇ = v − �1 + ic2�	v	2v . �11�

This equation possesses a globally stable limit-cycle solution
expressed as

v = exp�i�− c2t + const�� � vp�t� . �12�

Then, the u-independent term in Eq. �7� for p=0 will act as
a periodic external force on the dynamics of the smaller clus-
ter. In order to study its behavior conveniently, we introduce
ũ�u /vp�t� to obtain

u̇̃ = ��1 − K� + ic2�ũ − �1 + ic2�	ũ	2ũ + K , �13�

except for an initial transient in which the larger cluster does
not yet settle on the limit cycle.

It is easy to see that the last equation has a fixed point
ũ=1 for all K, which corresponds to the perfectly synchro-
nized state, u=v. The stability of this fixed point under Eq.
�13� is governed by the following eigenvalue equation:

�2 + 2�1 + K�� + K�K + 2� = 0, �14�

which gives �=−K ,−�K+2�, so that the fixed point is stable,
regardless of the values of K and c2.

It can also be shown that the dynamical system �13� has a
pair of other fixed points if K�KSN, where

KSN �
1 + c2

2

2�1 + �1 + c2
2�

�15�

is their saddle-node bifurcation point. Those fixed points,
which represent desynchronized periodic states in terms of
the original variables, are given by

ũ± �
K

K + �1 + ic2�y±
�16�

with

y± �
− �2K + 1 + c2

2� ± ��2K + 1 + c2
2�2 − 4�1 + c2

2�K�K + 2�
2�1 + c2

2�
.

Let J± be Jacobi matrices obtained by linearizing Eq. �13�
about the fixed points ũ±. Some algebra yields

det J± = 2K�K + 2�
 2K + 1 + c2
2

2K + 1 + c2
2 ± ��2K + 1 + c2

2�2 − 4�1 + c2
2�K�K + 2�

− 1� , �17�

which reveals that ũ+ is always a saddle, while ũ− is either a
node or a focus. The stability of the fixed point ũ− can be
determined with the aid of the following formula:

1

2
trJ− =

1 − c2
2

1 + c2
2K +

��2K + 1 + c2
2�2 − 4�1 + c2

2�K�K + 2�
1 + c2

2 ,

�18�

where “tr” stands for trace. Namely, for 	c2	�1, ũ− is always
unstable, since trJ−�0 in that case. On the other hand, for

	c2	�1, there appears an interval of K in which ũ− is stable,
which is the interval KH�K�KSN, where

KH �
− 2 + �4 + �1 + c2

2�2

1 + c2
2 . �19�

Actually, K=KH is a Hopf bifurcation point: as K passes
KH from above, a stable limit-cycle appears following desta-
bilization of the fixed point ũ− at K=KH. In view of the
original variables, this means the onset of quasiperiodicity as
exemplified in Fig. 2�a�. Numerical integration of Eq. �13�
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indicates that as K is further decreased, the limit cycle grows
in its amplitude and eventually collides with the saddle ũ+ at
some value of K, say KSC, to form a saddle connection and
disappear for K�KSC. This bifurcation scenario is illustrated
in Fig. 4. For K�KSC, no desynchronized attractors exist and
the active group exhibits only perfect synchronization ex-
pressed by the trivial fixed point ũ=1.

We remark that according to Eqs. �15� and �19�,
KH=KSN=�2−1 for 	c2	=1. Since no Hopf bifurcation oc-
curs and hence no limit cycles appear for 	c2	�1, KSC should
also converge to the same value for 	c2	→1+0. In fact, the
curve of KSC drawn numerically in Fig. 5 together with those
of KSN and KH due to Eqs. �15� and �19� seems to support
this conjecture. Figure 5 also displays a region where a de-
synchronized state appears for a random initial condition. Its
left boundary is found to be nicely approximated by the
curve of KSC, while its right boundary is situated far away
from the curve of KSN. The latter fact will be explained later
in Sec. II C. We may also note that the boundary between
periodicity and nonperiodicity substantially deviates from
the curve of KH, which is no wonder because cluster struc-
tures in the central region typically differ from the one sup-
posed here �see Fig. 3�.

�b� The case of �K , p���Kc ,1�. Here we investigate the
behavior of u under the assumption that �K , p� is in the active
region �p� pc� and close to �Kc ,1�= �a ,1�. For this purpose,
we first pay attention to the solution of Eqs. �8� and �9�.
Since we have taken the small size-ratio limit, it describes
the behavior of the system when the active group, as well as
the inactive, is synchronized. Suggested by our numerical
results mentioned before, we assume that after a transient
period, it is attracted to a stable periodic solution

v = Aei
t, w = Iei
t, �20�

where amplitudes A , I and frequency 
 are all constants �24�.
Substituting these expressions into Eqs. �8� and �9� and set-
ting A�0, we obtain the following equations:

I = f�	A	2,
�A , �21�

�b + K�1 − p� + i
�f�	A	2,
�

+ �1 + ic2�	f�	A	2,
�	2	A	2f�	A	2,
� = K�1 − p� ,

�22�

where

f�x,
� �
− a + Kp + i
 + �1 + ic2�x

Kp
.

Equation �22� determines the amplitude 	A	 as well as the
frequency 
 through its real and imaginary parts. We then
replace �v ,w� in Eq. �7� by this periodic solution and, for
convenience, make a transformation from u to U�ue−i
t to
find

U̇ = �a − K − i
�U − �1 + ic2�	U	2U + K��1 − p�A + pI� .

�23�

It should be noted that these equations �20�–�23� are not
restricted to the particular case �K , p�– �a ,1� addressed be-
low. It is also crucial to keep in mind that the last equation
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FIG. 5. Phase diagram for K and 	c2	 based on the approxima-
tion developed in the text for p=0, a=b=1, where the rightmost,
middle, leftmost curves show K=KSN,KH ,KSC, respectively. The
dark and gray areas are where numerical simulation of Eq. �2� start-
ing from a random initial condition produced desynchronized peri-
odic and nonperiodic solutions, respectively.
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FIG. 4. Phase portraits on �Reũ , Im ũ� plane of the system �13� with a=b=1, c2=−3, where the critical values of K are approximately
given by KSC=0.502, KH=0.820, and KSN=1.201. In each panel, the circle �ũ=1� is a stable fixed point corresponding to the synchronized
state and the square �ũ+ in text� is a saddle, whose stable and unstable manifolds are also shown. The fixed point marked by the triangle
�ũ− in text� represents a desynchronized periodic state, being stable only in panel �c�. In panel �b�, a stable limit cycle is also displayed, which
may be interpreted as a desynchronized quasiperiodic state.
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always has U=A as a fixed point, which corresponds to the
synchronization of all active oscillators.

Let us now introduce a pair of small parameters ��1
− p and ��Kc−K=a−K. It is straightforward to realize
from Eq. �22� or more directly from Eqs. �8� and �9� that the
frequency 
 as well as the amplitudes A and I vanish for �
=�=0. Going a step forward, we obtain


 = − c2� − c2a�1 +
a

b
�� + ¯ , �24�

A2 = � + a�1 +
a

b
�� + ¯ , �25�

where A has been taken to be real without harming the gen-
erality of our argument, and the discarded terms are of the
second order as to the small parameters. Making use of these
results and introducing

Ũ �
U

�a�1 +
a

b
��

, �26�

� � a�1 +
a

b
��t , �27�

d �
�

a�1 +
a

b
��

, �28�

and finally taking the limit �→0 with d fixed, we obtain

dŨ

d�
= ��1 + ic2�d + ic2�Ũ − �1 + ic2�	Ũ	2Ũ + �1 + d ,

�29�

which describes the asymptotic dynamics of u near the criti-
cal point �K , p�= �Kc ,1� by way of

u = Uei
t =�a�1 +
a

b
��Ũei
t. �30�

Below we study fixed points of Eq. �29� and their bifurca-
tions using d as the control parameter. Critical values of d
will then give, via Eq. �28�, critical slopes of corresponding
bifurcation curves at �K , p�= �Kc ,1�.

First of all, it is worth noting that any fixed point of the
dynamical system �29� must satisfy

Ũ =
�1 + d

	Ũ	2 − d + ic2�	Ũ	2 − �1 + d��
. �31�

Moreover, it is easy to derive the formulas

tr�J� = 2�d − 2	Ũ	2� , �32�

det�J� = 3�1 + c2
2�	Ũ	4 − 4�d + �1 + d�c2

2�	Ũ	2 + d2 + c2
2�1 + d�2,

�33�

where J is the Jacobi matrix at the fixed point. There are at
most three fixed points with the system �29�. By inspection,

we see that one of them is given by Ũ=�1+d, which corre-
sponds to perfect synchronization �U=A�, as can be shown
using Eqs. �25�, �26�, and �28�. It is easy to see that this fixed
point is stable as long as it exists, i.e., for d�−1. We remark
that d=−1 gives the critical slope of the aging transition
curve given by Eq. �3�, as it should be.

Other fixed points corresponding to clustering of the ac-
tive group may be found from the following equation which
is obtained by taking the absolute values of both sides of Eq.

�31� and then defactorizing 	Ũ	2− �1+d�:

F�	Ũ	2� � �1 + c2
2�	Ũ	4 + �2 − �1 + c2

2��1 + d��	Ũ	2 + 1 = 0.

�34�

An analysis of this equation shows that there exists a couple

of new fixed points Ũ± for d�dSN, where

dSN �
1 − c2

2 + 2�1 + c2
2

1 + c2
2 �35�

is their saddle-node bifurcation point and

	Ũ±	2

=
�1 + c2

2��1 + d� − 2 ± ���1 + c2
2��1 + d� − 2�2 − 4�1 + c2

2�
2�1 + c2

2�
.

�36�

Let us find out about the types and stability of these fixed
points. For this purpose, we need to know the signs of the
determinants of their Jacobi matrices J±. First of all, from
Eqs. �33� and �34�, we obtain

det�J±� = ��1 + c2
2��1 + d� + 2��V − 	Ũ±	2� , �37�

where

V �
d2 + c2

2�1 + d�2 − 3

�1 + c2
2��1 + d� + 2

.

By some tedious but simple calculations, we also obtain

F�V� = −
y�f1y2 + f2y + f3�

��1 + c2
2��1 + d� + 2�2 , �38�

where F is defined in Eq. �34� and y��1+c2
2��d−dSN� and

the coefficients f i are given by

f1 =
2

�2 , f2 =
�2 + 12� + 4

�2 , f3 =
4��2 + 4� + 4�

�

with ���1+c2
2.

For d�dSN, the right hand side of Eq. �38� is negative,

implying that 	Ũ−	2�V� 	Ũ+	2. Combining this result with
Eq. �37� enables us to conclude that for d�dSN, det�J+��0,

while det�J−��0. Namely, Ũ+ is always a saddle, whereas
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Ũ− is either a node or a focus. It is easy to show using Eqs.

�32� and �36� that for 	c2	�1, Ũ− remains to be an unstable
node in the whole range of d�dSN. In this case, there appear
no attractors corresponding to the breakdown of synchroni-
zation of active oscillators. However, for 	c2	�1, it is stable
in the range dSN�d�dH and unstable for d�dH, where

dH �
1 − c2

2 + �4�1 + c2
2� + �1 − c2

2�2

1 + c2
2 . �39�

What happens for d�dH is qualitatively the same as what we
have found for the p=0 case: d=dH is a Hopf bifurcation
point, beyond which a stable limit-cycle appears until it dis-
appears for some value of d, say dSC, by colliding with the

saddle Ũ+. For d�dSC, there exist no attractors implying the
desynchronization of active oscillators. The values of dSC
were evaluated by integrating Eq. �29� numerically. These
analytical and numerical results for the critical values of d
may be used to draw straight lines passing through �K , p�
= �Kc ,1� which are tangent to corresponding bifurcation
curves on the parameter plane, as demonstrated in Fig. 6�b�.
For example, the curve of saddle-node bifurcation has to be
tangent to

K − a = a�1 +
a

b
�dSN�p − 1� �40�

at the critical point �K , p�= �Kc ,1� and likewise for the
curves of Hopf bifurcation and saddle connection. It is im-
portant to note that for 	c2	=1, dH=dSN�=�2�. In fact, our
numerical results for dSC as displayed in Fig. 6�a� suggest
that all three critical values of d are the same for 	c2	=1,
leaving only dSN for 	c2	 smaller. Hence, just as in case �a�,
desynchronized attractors disappear for 	c2	�1 in the present
case as well.

�c� The remaining region and comparison with numerical
results. For the remaining region, we present only numerical
results obtained from an analysis of Eq. �7� based on solu-
tions of Eqs. �20�–�23� due to the Newton-Rapson method.
The results cover all the region, as displayed in Fig. 1 �see
also Fig. 6�b��. We confirmed that the analytical results for
cases �a� and �b� well agree with such results.

Let us recall that according to the present theory, two-
cluster desynchronization of the active group with small size
ratios can occur only in between the curve of the saddle

connection and that of the saddle-node bifurcation. The
whole region where desynchronized attractors exist in phase
space will be probably larger than this. Nevertheless, when
compared with the simulation results also displayed in Fig. 1,
the curve of the saddle connection is found to nicely approxi-
mate the left boundary of the desynchronization horn. This
fact is consistent with the observation that as K is increased,
desynchronization starts with a two-cluster state with a small
size ratio, as is seen in Fig. 3. In fact, we have confirmed that
the trajectories of active oscillators belonging to the smaller
cluster near the onset of clustering are nicely reproduced by
the solution to Eq. �23�. On the other hand, the curve of the
saddle-node bifurcation is situated far away from the right
boundary of the horn. This fact will be given an explanation
from a different point of view in the next subsection. It
should also be recalled that our analyses reveal that for both
p=0 and �K , p�– �Kc ,1�, the desynchronization of the active
group as treated above does not happen if 	c2	�1. The nu-
merical result, however, suggests that this holds everywhere
on the �K , p� phase diagram �see Fig. 1�a��. Although it is
uncertain whether this is also true about other modes of de-
synchronization, these results explain, to some extent, the
finding in simulation that the desynchronization horn disap-
pears when 	c2	 is less than unity.

Before ending this subsection, we give some remarks.
First, in the above, we have not discussed the stability of the
clustering solutions in full phase space. The type of cluster-
ing discussed above is the small size-ratio limit of two-
cluster states of the active group, so that the larger active
cluster and the inactive group are virtually unaffected by the
smaller active cluster. Therefore, as long as the synchronized
state is stable as we have assumed on the basis of numerical
results, the two-cluster states treated above that are stable in
the subspace should also be stable in full phase space, in
accordance with our numerical observations. Second, in
cases �a� and �b� above, the fixed points born through saddle-
node bifurcation come to possess double zero eigenvalues at
the bifurcation point for 	c2	=1 �see Fig. 5 and Fig. 6�a��.
This is so called the Takens-Bogdanov degeneracy, near
which it is known from a mathematically rigorous analysis
that the three types of local and global bifurcations as found
above take place �25�. Our analysis agrees with this. A simi-
lar kind of degeneracy occurs at the critical point �K , p�
= �Kc ,1� in the phase diagrams for 	c2	�1, but it seems to be
an exceptional one because unlike those just mentioned, the
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FIG. 6. The thresholds dSN,dH, and dSC. �a�
Their c2 dependence and �b� critical slopes due to
them in comparison with numerically obtained
bifurcation curves for c2=−3, a=2, b=1. In �b�,
the straight lines �dotted� show the slopes of the
bifurcation curves at the critical point �K , p�
= �Kc ,1�= �2,1� obtained by the asymptotic
analysis made in the text. In both panels, dSN and
dH are due to Eqs. �35� and �39�, respectively,
while dSC is due to direct simulation of Eq. �29�.
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three fixed points coalesce at the origin in this case, as can be
seen from Eq. �8�, though associated bifurcation structures
appear to be the same. Finally, it should be noted that our
theory developed here provides one natural scenario for the
onset of quasiperiodicity in coupled identical oscillators. A
different mechanism for such a phenomenon has been found
recently for a population of oscillators coupled indirectly
�26�.

C. Swing-by mechanism of diffusion-induced inhomogeneity

In the foregoing subsections, by means of numerical
simulation starting from random initial conditions, we have
seen that the active group of the globally coupled system �2�
exhibits clustering in a certain region of the �K , p� plane,
dubbed the desynchronization horn. It has also been shown
analytically that the simplest category of two-cluster states
indeed exists in a region including the desynchronization
horn, supporting in part the numerical observation. Instead of
undertaking a study of other categories of desynchronization,
we now turn our attention to other important issues of how
random initial conditions lead to desynchronization and also
how the degree of desynchronization or inhomogeneity of
the system depends on parameters. These issues are related
to a counterintuitive aspect of our findings reported above. In
our model equations �2�, the constituent oscillators are linked
through diffusive couplings. This type of coupling is quite
common in every subfield of nonlinear dynamics and, need-
less to say, its typical effect is to make the system uniform.
There can be very interesting exceptions, however, when
there is a substantial difference in diffusion constants �in a
generalized sense� of the variables involved. For example,
the well-known Turing instability refers to an instability of a
spatially uniform state in reaction-diffusion systems occur-
ring under such a situation �27�. Some neurophysiological
models are also known to exhibit similar phenomena �28�,
where oscillators interact through diffusive couplings involv-
ing only one variable, i.e., membrane potential, and their
synchronization breaks down as a result of cooperation be-
tween this one-variable coupling and strong nonisochronicity
of the oscillators �29�. These examples demonstrate that dif-
fusive coupling can counterintuitively induce inhomogeneity.
Such an effect may be called diffusion-induced inhomogene-
ity.

It is important to notice that our system provides another
example of diffusion-induced inhomogeneity. This may be
already implicit in Fig. 1, but is shown more explicitly for
the case of p=0 in Fig. 7, which presents simulation results
for a measure of inhomogeneity of the system defined by


 = ��	zj − zj̄	2�1/2� , �41�

where the overbars stand for averages over all oscillators and
the brackets mean long-time average. The data in Fig. 7 are
averages over ten different random initial conditions. Each
data set indicates that in a range of K, the inhomogeneity of
the system is enhanced by increasing K. This example of
diffusion-induced inhomogeneity differs from the known
ones at least in two crucial points: One is that in our model,
the diffusive couplings are introduced symmetrically as to

the two variables of each oscillator, namely the real and
imaginary parts of its complex amplitude, and another is that
the homogeneous state or the perfectly synchronized state
remains stable even where the phenomenon takes place; in
fact, a linear stability analysis in full phase space of the
perfectly synchronized limit-cycle for p=0 �and a=1�

z1 = ¯ = zN = exp�i�− c2t + const�� �42�

reveals that real parts of stability eigenvalues are in the set
−K ,−2 ,−�K+2� except for zero, and hence, increasing K
simply strengthens the stability of perfect synchronization. It
will turn out below that the diffusion-induced inhomogeneity
observed here originates from an interplay of random initial
conditions and strong nonisochronicity of oscillators medi-
ated by an incoherent state. This scenario remains essentially
the same for p�0. Hereafter we fix the value of a at unity.

We first deal with the case of p=0 and then proceed to
discuss the effect of aging �p�0�. Main results for the
former were briefly reported in Ref. �15�.

(a) The case of p=0. For convenience, let us rewrite Eq.
�2� with p=0 in terms of polar coordinates

ṙ j = �1 − K − rj
2�rj + KR cos�� − � j� , �43�

�̇ j = − c2rj
2 +

K

N


k=1

N
rk

rj
sin��k − � j� �44�

=− c2rj
2 +

K

rj
R sin�� − � j� , �45�

where zj �rje
i�j and
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FIG. 7. The behavior of 
 for N=4000 averaged over ten real-
izations of the random initial condition explained in the text. The
numbers attached to the data are the values of c2. The lines con-
necting the symbols are to guide the eye. The inset shows K�’s
graphs in the range 0�K�1, 0�k��0.6 for the same values of
c2, where its maximum values as well as its maximum points indi-
cated by the vertical dotted lines in the main panel monotonically
decrease for increasing 	c2	.
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Z �
1

N


k=1

N

zk � Rei�. �46�

We first note that there is a simple category of exact solu-
tions for the above equations, which are featured by the
property Z=0 and called incoherent solutions �17–19�:

rj = �1 − K, � j = − c2�1 − K�t + � j �47�

for 1� j�N and 0�K�1 with constants � j satisfying



j=1

N

ei�j = 0. �48�

Each of these solutions represents a state in which all the
complex amplitudes lie on the circle with radius �1−K in the
complex plane, which circle will be hereafter referred to as
the “incoherent circle.” The variety of such solutions is ac-
tually very rich, because there is only one constraint on the
large number of phase constants � j �see Eq. �48��. Here we
focus on those solutions whose complex amplitudes are uni-
formly distributed on the incoherent circle. According to a
linear stability analysis, such solutions are always unstable in
the system studied in this paper �see the Appendix�. How-
ever, they are of saddle type, possessing stable directions, as
can be realized straightforwardly without invoking any sta-
bility analysis �15�. In fact, Eq. �2� is symmetric for the
transformations zj→−zj, so that for any trajectory of the sys-
tem in full phase space starting from a set of initial complex
amplitudes having the same symmetry, the mean field Z re-
mains to be zero for all t�0 and hence the trajectory will
converge to an incoherent solution of the form �47� and �48�.
In other words, the whole set of reflection-symmetric points
in phase space of Eq. �2� belongs to the stable manifold of
“incoherence.” If the initial complex amplitudes are in addi-
tion random enough so that their phase distribution is uni-
form, then the final incoherent state should be of the category
on which we focus here. For the time being, we suppose that
the initial state of the system is approximately of this type. In
our numerical simulations, this is realized by setting the ini-
tial values of the complex amplitudes randomly in the range

− 1 � Re�zj�, Im�zj� � 1, �49�

as already mentioned. The initial value of R is then as small
as O�1/�N�, so that for some time thereafter, the system will
approach an incoherent state, keeping its phase distribution
almost uniform. Actually, at least qualitatively, the behavior
of 
 is not very sensitive to the degree of how well the initial
condition satisfies the above requirements, in particular,
when the nonisochronicity of the oscillators measured by 	c2	
is sufficiently strong �see below�.

We then note that as the complex amplitudes approach the
incoherent circle, their phases tend to be governed more and
more by the Kuramoto model of identical phase oscillators
�2�

�̇ j = − c2�1 − K� +
K

N


k=1

N

sin��k − � j� , �50�

according to Eq. �44�. Moreover, in this regime, we see that
R is roughly equal to rICQ=�1−KQ, where rIC is the radius
of the incoherent circle and

Q � � 1

N


k=1

N

ei�k� �51�

is the order parameter measuring phase coherence. Since the
model �50� is known to synchronize for K�0, the value of Q
will start to increase when the original system comes close
enough to an incoherent state, and this in turn will drive the
system off such a state, since the second term on the right
hand side of Eq. �43� becomes no longer negligible. This
scenario is verified in Fig. 8. In panel �a� of this figure, the
behavior of all rj from t=0 is exemplified, indicating that the
complex amplitudes initially tend to the incoherent circle,
but then change directions to run away from it outward or
inward, reflecting the fact that the sign of the second term on
the right hand side of Eq. �43� depends on the oscillator
phase. As Fig. 8�b� reveals, the oscillator phases � j remain
almost uniformly distributed while the oscillators approach
the incoherent circle, and then some coherence develops
through the synchronization mechanism explained above, re-
sulting in a rapid growth of R as displayed in Fig. 8�c� and
hence in the departure of the oscillators from the incoherent
circle. Of course, scattering of oscillator trajectories only in
the radial direction is not enough to cause clustering; in fact,
if the phases remain synchronized sufficiently well, the dif-
fusive coupling will eventually drive the system into perfect
synchronization. It is at this stage that the nonisochronicity
of the oscillators plays a crucial role. A look at Eq. �44�
shows that the effective natural frequency of the jth oscilla-
tor is given by −c2rj

2. Hence, if 	c2	 is sufficiently large, the
scattering in the radial direction will give rise to large dis-
persion in those effective frequencies, whereby the whole
population should be strongly twisted along the azimuthal
direction and as a result split into, roughly speaking, two
groups characterized by large and small amplitudes. In this
way, the system is expected to settle down in persistent de-
synchronization.

Recall that the degree of inhomogeneity 
 behaves in a
resonant way �see Fig. 7�. We may ask why this happens and
if it is possible to predict where 
 becomes maximum. To
answer these questions in a heuristic way, we recall that the
growth of phase coherence triggers the clustering process
through the phase-dependent term of Eq. �43�. The key is
therefore how the amplitude of that term KR depends on the
phase order parameter Q. Our foregoing argument suggests
that the stronger this dependence is, the more strongly the
system is driven into splitting and thus inhomogeneity. Since
the estimate R��1−KQ mentioned before is too crude, we
exploit the linear stability analysis of the incoherent state to
obtain
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R

Q
= � 2�1 − K�3/2�1 + ic2�

2�1 − K��1 + ic2� − K + �
� � � �52�

�see the Appendix�, where � is a stability eigenvalue of the
incoherent state with the largest real part. The inset of Fig.
8�c� evidentiates that this approximation holds in a fairly
wide range of Q. It thus turns out that in good approxima-

tion, KR is proportional to Q with the proportionality con-
stant K�, which will govern the behavior of 
 together with
c2. A number of K� vs K plots with c2 fixed are presented in
the inside panel of Fig. 7, each showing a sharp resonance-
like behavior with the maximum points agreeing fairly well
with those of 
, as expected �30�. The reason why K� and
hence 
 exhibit the resonancelike behavior may be consid-
ered here. For simplicity, we do this within the crude ap-
proximation of setting K� to KrIC. As K is increased, the first
factor K, which comes directly from the diffusive coupling,
of course, increases, whereas the second factor rIC=�1−K
monotonically decreases. The “resonance” of 
 is caused by
competition between these two opposing effects of increas-
ing the coupling strength on the magnitude of the clustering-
triggering force. As a matter of fact, it is possible to show by
using the equation of �, �A15� with p=0 �see Appendix�, that
� approaches rIC for increasing 	c2	. Reflecting this fact, the
maximum point of KrIC, i.e., K=2/3, makes a not so bad
estimate of 
’s peak point �see Fig. 7�.

Actually, there are two problems to be resolved with the
above heuristic explanation of the diffusion-induced inhomo-
geneity resonance. One is that it apparently cannot explain
the inhomogeneity observed in the region K�1 where the
incoherent circle no longer exists �see Fig. 7�. In fact, this is
a finite-size effect, because if the system is sufficiently large
for each value of K�1, then the complex amplitudes are
expected to come too close to one another to remain desyn-
chronized during the initial stage in which all of them tend to
the origin, as can be seen from Eq. �43� with R=0. In order
to check this hypothesis, we examined the behavior of the
system when initial complex amplitudes are distributed uni-
formly in a disc centered at the origin, finding that the sys-
tem indeed falls in perfect synchronization for sizes of the
disc smaller than a threshold value, say rc. Owing to the
symmetry of the system pointed out before, we can then
expect that there is a critical system size Nc�� such that the
above condition is met at the initial stage if N�Nc. Accord-
ing to our simulation results, rc increases as K grows and
decreases as 	c2	 grows �data not shown�. This result is con-
sistent with the behavior of 
 displayed in Fig. 7 which
indicates that synchronization is easier for K larger and for
	c2	 smaller. Another problem is that the prediction for the
maximum point of 
 does not work very well when 	c2	 is
too large, as is clear in Fig. 7. This is because excessive
nonisochronicity breaks the swing-by scenario by confining
the oscillators to a neighborhood of the incoherent circle.
Namely, as soon as the oscillators leave the incoherent circle,
so big frequency differences are generated that they quickly
spread along the circle, thereby the value of R being rapidly
reduced back towards zero, and therefore the oscillators
making U-turns to approach the incoherent circle again �31�.
The first two panels of Fig. 9 demonstrate that this process is
repeated on and on and that at each cycle, the size ratio
between the large amplitude and small amplitude groups var-
ies in a complicated way. Consequently, as Fig. 9�c� indi-
cates, R is no longer proportional to Q, so that there is no
reason why the theoretical estimate of the peak point of 

works very well. The repeated process tends to fatten the
smaller group and make the oscillation amplitudes of R and
Q bigger than when the nonisochronicity is moderately
strong.

FIG. 8. Relaxation from a random initial condition for c2=−3,
K=0.65, N=1000. �a� Temporal behavior of rj �	zj	, where the thin
horizontal line shows the radius of the incoherent circle. �b� Like-
wise for � j �Arg�zj�. �c� The behavior of the order parameters R
and Q, where the inset covers the ranges 0�Q ,R�1, demonstrat-
ing a fairly good agreement between the data and the predicted
relationship R=�Q as drawn with the broken line.
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(b) The case of 0� p�1. The effect of aging on diffusion-
induced inhomogeneity can be analyzed in a similar way.
The role of incoherent states is here played by such states
that

zj = �1 − Kei�j �j � Sa� ,

=0 �j � Si� , �53�

where the phases � j have the same form as Eq. �47� with
constants � j satisfying 
 j�Sa

ei�j =0. According to numerical
simulation, the inactive oscillators always remain synchro-

nized, so that here we pay attention only to the inhomogene-
ity of the active group and introduce its standard deviation 
a
as Eq. �41� with the overbar meaning an average over all j
�Sa. Similarly, we introduce the phase order parameter of
the active group Qa. Then, since the equation of rj for each
active oscillator is the same as before, a good measure of the
strength of the splitting force will be given by K�a
�KR /Qa. A linear stability analysis of the generalized inco-
herent states �53� yields the following formula:

K�a = 2�1 − p�K�1 − K� � + K + b − ic2�1 − K�
� + K�1 − p� + b − ic2�1 − K�

�
	 � � + �1 − K��1 − ic2�

� + 2�1 − K��1 − ic2�
� , �54�

where � is a linear stability eigenvalue of the incoherent state
with the largest real part �see the Appendix for details�.

Figure 10�a� shows the behavior of 
a obtained by simu-
lation for several values of p, where the level of inhomoge-
neity is seen to monotonically go down as the aging pro-
ceeds, though 
a does not change its behavior qualitatively.
This result may be explained from our theory, because the
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FIG. 9. Relaxation from a random initial condition for c2=−20,
K=0.65, N=1000. �a� Temporal behavior of rj �	zj	, where it
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maximum value of K�a computed from Eq. �54� also de-
creases for increasing p, as demonstrated in Fig. 10�b�. The
above formula of K�a

enables us to predict the maximum
point of 
a, as before, by calculating the value of K at which
K�a

is largest for each fixed value of p. The upper curve in
Fig. 10�b� shows the result, indicating that this prediction is
good for p less than roughly 0.6, but not very efficient for p
larger. This is not surprising, because when p is large, the
resonance of K�a

is no longer sharp and almost disappears
�data not shown, but this may be guessed from the behavior
of the maximum value of K� displayed in Fig. 10�b��. Figure
10 only provides the results for c2=−3, but we found similar
results for c2=−5 as well.

Note that in the mechanism discussed in the present sub-
section, each oscillator behaves in a way reminiscent of the
swing-by motion of a space explorer, in which it is first at-
tracted by a star and then redirected for its destination star;
the role of the incoherent circle is analogous to that of the
first star. This is why we call the present mechanism of
diffusion-induced inhomogeneity the swing-by mechanism.

D. Strong damping limit

This final subsection is devoted to a study of a limiting
case such that the damping of the inactive oscillators is
strong, namely, b�K. As we see below, the effect of aging
on globally coupled Stuart-Landau oscillators is then much
more tractable than otherwise. Let us start by recalling the
original equations: for j�Sa,

ż j = �1 − K�zj − �1 + ic2�	zj	2zj +
K

N


k=1

N

zk �55�

and for j�Si,

ż j = �− b − K�zj − �1 + ic2�	zj	2zj +
K

N


k=1

N

zk. �56�

The basic idea is simple: Under the assumption on the damp-
ing rate b, we can safely put zj �0 for every inactive oscil-
lator. The active oscillators may then be thought of as inde-
pendent of them and hence obeying

ż j = �1 − K�zj − �1 + ic2�	zj	2zj +
K�1 − p�

Na


k=1

Na

zk, �57�

where Na��1− p�N is the number of the active components
of the system. Assuming that 1−Kp�0 and introducing the
set of transformations

Aj �
zj

�1 − Kp
, �58�

� � �1 − Kp�t , �59�

Ka �
K�1 − p�
1 − Kp

, �60�

we obtain from Eq. �55�

dAj

d�
= Aj − �1 + ic2�	Aj	2Aj +

Ka

Na


k=1

Na

�Ak − Aj� , �61�

which is nothing but the agingfree version �i.e., p=0� of our
original equations �2� except that both the system size and
the coupling strength instead depend on the aging level p.
Note that c2 remains the same. A useful implication follows
from this correspondence: Suppose that in the original sys-
tem �2� with p=0, a bifurcation phenomenon takes place at a
certain value of K; this value may vary with the system size,
so that we write it K0�N�. Then, owing to Eqs. �58�–�61�, the
same phenomenon will occur in the active group of the aged
system with the aging level p �0� p�1� at the coupling
strength given by

K =
K0�Na�

1 − p�1 − K0�Na��
. �62�

This formula simplifies for the infinite-size system as

K =
K0���

1 − p�1 − K0����
. �63�

Note that these formulas do not violate the initial assumption
1−Kp�0, as easily confirmed, so that the consistency of our
argument is maintained. Note also that the right-hand sides
of Eqs. �62� and �63� converge to unity for p→1. This fact
may suggest that all bifurcation sets lying on the �K , p� plane
accumulate at the critical point, �K , p�= �Kc ,1�= �1,1�, at
least in the strong damping limit.

As examples, let us take the saddle-node, Hopf, and
saddle-connection bifurcations in two-cluster states in the
small size-ratio limit as discussed in Sec. II B. Formula �63�
tells that for each value of p, corresponding bifurcations oc-
cur in the active group at

K = K#�p� �
K#

1 − p�1 − K#�
, �64�

where the subscript #� �SN,H,SC� and K# on the right hand
side means corresponding bifurcation points in the agingfree
system. Figure 11 compares these with numerical results for
b=5. We find that they are in nice agreement even for this
moderately large value of b.

III. OTHER EXAMPLES OF COUPLED LIMIT-CYCLE
OSCILLATORS

In the preceding section, we have found that the �K , p�
phase diagram of globally and diffusively coupled Stuart-
Landau oscillators with 	c2	�1 has a horn-shaped region
converging at �K , p�= �Kc ,1� in which active oscillators are
desynchronized for random initial conditions in a way which
can be viewed as a type of diffusion-induced inhomogeneity.
The aim of this section is to find out how general the exis-
tence of such a region, the desynchronization horn, is in the
�K , p� phase diagrams of globally and diffusively coupled
limit-cycle oscillators other than the coupled Stuart-Landau
systems. The desynchronization horn should come into exis-
tence at least if both active and inactive elements are in the
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neighborhood of a Hopf bifurcation and possess strong
enough nonisochronicity, since the dynamics of the system
then can be reduced to those of the coupled Stuart-Landau
systems by a normal form analysis �to be exact, this requires
an additional constraint such that the coupling in the original
system is sufficiently weak�. An example corresponding to
this case is shown in Figs. 12�c� and 12�d� which are devoted
to the coupled Brusselators �32�:

ẋj = A − �Bj + 1�xj + xj
2yj +

K

N


k=1

N

�xk − xj� , �65�

ẏ j = Bjxj − xj
2yj +

K

N


k=1

N

�yk − yj� , �66�

where A=3 and Bj =10.2 �j�Sa� ,9.8 �j�Si�. Note that in an
isolated Brusselator with A fixed, we have Hopf bifurcation
at B=Bc�1+A2, which equals 10 in the present case. Ac-
cording to Eq. �B.18b� of Ref. �2�, we obtain c2= �4−7A2

+4A4� / �3A�2+A2��=2.676¯ �1. The data in Fig. 12�c� in-
dicate that the �K , p� phase diagram indeed has qualitatively
the same structure as those of the coupled Stuart-Landau
systems. This is also seen in Fig. 12�d�, where the behavior
of 
 as well as the cluster structure are presented for p=0.

Our results displayed in Figs. 12�a� and 12�b� demon-
strate, however, that the desynchronization horn and associ-
ated diffusion-induced inhomogeneity might be more com-
mon. Those panels are for coupled Rössler systems �33� of
the form �12�

ẋj = − yj − zj +
K

N


k=1

N

�xk − xj� , �67�

ẏ j = xj + cjyj +
K

N


k=1

N

�yk − yj� , �68�

ż j = dj + zj�xj − ej� +
K

N


k=1

N

�zk − zj� �69�

for j=1, . . . ,N, where cj =dj =0.2, ej =1 �j�Sa�, cj =dj =
−0.2, ej =2.5 �j�Si�; for K=0, each active element exhibits
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FIG. 11. Examination of the formula �64� for the bifurcation
curves in the small size-ratio limit, where b=5; �a� KSN, �b� KH, �c�
KSC. In each panel, the solid and broken lines show numerical re-
sults based on the Newton-Rapson method and the formula,
respectively.
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FIG. 12. Desynchronization horns and cluster structures found
numerically for the coupled periodic Rössler systems �67�–�69� ��a�,
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N=1000 in all panels, and p=0 in �b� and �d�. The results in each
panel were obtained for a random initial condition. Other details are
the same as in Figs. 1 and 3.
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periodic oscillation, while every inactive element falls into a
fixed point. In spite that the parameter values defining both
active and inactive oscillators are ad hoc chosen, the results
are quite similar to those for the coupled Stuart-Landau sys-
tems. To conclude, the desynchronization horn and associ-
ated diffusion-induced inhomogeneity may be fairly general
phenomena in populations of globally and diffusively
coupled active and inactive oscillators.

IV. SUMMARY, REMARKS, AND REMAINING
PROBLEMS

In this paper, we have discussed the effect of “aging” for
populations of globally and diffusively coupled limit-cycle
oscillators, focusing on the desynchronization of active os-
cillators which takes place inside a horn-shaped region �de-
synchronization horn� in the plane of the coupling strength K
and the ratio of inactive oscillators p. By choosing the
Stuart-Landau oscillators as a prototypic model of periodic
oscillators, we have shown analytically and numerically that
the desynchronization horn emerges only when the noniso-
chronicity of the oscillators �amplitude dependency of fre-
quency� is sufficiently strong and that it has some character-
istic features. This phenomenon can be interpreted as a type
of diffusion-induced inhomogeneity, which, unlike already
known types, relies on neither unequal coupling constants
nor destabilization of the uniform �synchronized� state. We
have found that it instead originates from an interplay be-
tween random initial conditions, the nature of coupling
among oscillators �global and diffusive�, and sufficiently
strong nonisochronicity �the swing-by mechanism�. More-
over, a theory has been developed to estimate the value of a
control parameter at which the inhomogeneity of active os-
cillators becomes maximum. This theory has been found to
be efficient for not too strong nonisochronicity and for p not
very large, providing probably the first theoretical means to
predict the degree of inhomogeneity of coupled oscillators,
though further studies may be necessary to establish it. Our
results for some other coupled oscillators �Rössler systems
and Brusselators� suggest that these phenomena are not in-
herent to the coupled Stuart-Landau oscillators, but can be
found in a wide class of periodic oscillators. It is therefore
expected that in addition to the aging transition found in our
earlier work �12�, both the desynchronization horn and the
diffusion-induced inhomogeneity based on the swing-by
mechanism will be key concepts in the description of the
aging of coupled periodic oscillators. Hopefully, the results
of this paper will lead to some useful applications in the
control of coupled-oscillator dynamics in such a situation
that effects of bad components are unavoidable.

There remain a variety of interesting and important sub-
jects. Here we name only a few. First, the complex structure
of clustering near the maximum point of 
a �Figs. 7 and 12�
needs to be elucidated. Our theory developed in Sec. II B
successfully reproduces some crucial features of the desyn-
chronization horn, i.e., the hornlike shape converging at the
critical point �K , p�= �Kc ,1� �34�, the left boundary, and the
transition between periodicity and nonperiodicity inside it,
but this theory is restricted to the simplest category of desyn-

chronization of the active group. It will be desirable to ex-
tend it to more general types of desynchronization or clus-
tering and uncover the nature of the complexity in the central
region of the horn. An interesting question in this connection
is whether or not all bifurcation curves inside the active re-
gion �p� pc� accumulate at the critical point, just as found in
the strong damping limit �Sec. II D�. Second, the diffusive
coupling considered in this paper is confined to the scalor
type. Such a coupling can be realized in experiments of
chemical reactors such that each pair of reactors are bidirec-
tionally coupled with peristaltic pumps �35�, where the
strengths of diffusive coupling thus created are the same for
all chemical species involved, and probably in many other
experiments. However, for the sake of generality, it may be
examined what happens if the constraint of the scalor type is
relaxed, for example, by making K complex in the case of
the coupled Stuart-Landau oscillators. Third, the effect of
nonidenticality of oscillators in each subgroup will be worth
extensive studies from a practical point of view. Last but not
least, it will be of significance to clarify biological or physi-
ological implications of the results in this work. These and
other problems will be discussed elsewhere.
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APPENDIX: THE SPECTRUM OF STABILITY
EIGENVALUES OF THE INCOHERENT STATE
AND THE DERIVATION OF EQS. (54) AND (52)

The generalized incoherent solutions, which exist for
0�K�1, may be expressed as

zj = �1 − Kei�
t+�j� � zj
�0� �j � Sa� �A1�

=0 �j � Si� , �A2�

where 
�−c2�1−K� and � j in �A1� are phase constants such
that 
 j�Sa

ei�j =0. Since incoherent solutions relevant to our
study are those whose phase distributions are uniform on the
incoherent circle, we impose another constraint on � j:

 j�Sa

e2i�j =0. For convenience, we extend the definition of
zj

�0� over j�Si as it is in Eq. �A1� but with arbitrary constants
� j. Let us consider the linear stability of such a solution by
introducing perturbation variables uj as

zj = �1 + uj�zj
�0� �j � Sa� , �A3�

=ujzj
�0� �j � Si� , �A4�

whose substitution into Eq. �2� with a=1 leads to

u̇j = �− �1 − K� + i
�uj − �1 − K��1 + ic2�uj
*

+
K

N


k=1

N

ei��k−�j�uk �j � Sa� , �A5�
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u̇j = �− �b + K� − i
�uj +
K

N


k=1

N

ei��k−�j�uk �j � Si� ,

�A6�

where the asterisk stands for complex conjugate. In order to
find stability eigenvalues of the incoherent solution, we pay
attention to the fact that the three macrovariables

E �
1

N�1 − p� 

j�Sa

ei�juj , �A7�

F �
1

N�1 − p� 

j�Sa

ei�juj
*, �A8�

G �
1

Np


j�Si

ei�juj �A9�

obey the following equations:

Ė = �− 1 + K�2 − p� + i
�E − �1 − K��1 + ic2�F + KpG ,

�A10�

Ḟ = − �1 − K��1 − ic2�E + �− �1 − K� − i
�F , �A11�

Ġ = K�1 − p�E + �− b − K�1 − p� − i
�G . �A12�

Note that E=F=G=0 constitutes an invariant subspace in
the whole phase space of �uj�, in which subspace we have

u̇j = �− �1 − K� + i
�uj − �1 − K��1 + ic2�uj
* �j � Sa� ,

�A13�

u̇j = �− �b + K� − i
�uj �j � Si� . �A14�

From Eq. �A13�, we obtain stability eigenvalues �=0 and
−2�1−K�, both of which are �N�1− p�−2�-fold degenerate,
while from Eq. �A14� we obtain �=−�b+K�− i
, which is
�2�Np−1��-fold degenerate. All these eigenvalues are either
stable or marginally stable �Re��0�.

Let us now go back to the evolution equations of the
macrovariables, which describe perturbations transversal to
the invariant subspace. It is quite easy to see that associated
eigenvalues are given by �=−b−K�1− p�− i
 as well as

�2 − �K�3 − p� − 2�� − K�1 − K��1 − p��1 − ic2� = 0.

�A15�

Note that the spectrum of stability eigenvalues for the inco-
herent solution is completed by adding complex conjugates
of these eigenvalues. Let the roots of Eq. �A15� be �+ and �−
with Re�+�Re�−. Since it is possible to prove that
Re�+Re�−�−K�1−K��1− p�, we see that Re�+�0 as well
as Re�−�0 for the region 0�K�1,0� p�1 treated here.
Hence it turns out that among all the stability eigenvalues of
the incoherent solution, only �+ and its complex conjugate
are unstable. Anyway, this establishes that the incoherent
state is linearly unstable.

We now derive the formula of K�a �54�. Noting that the
mean-field Z and the phase order parameter of the active
group Qa are, respectively, given by

Z �
1

N


j=1

N

zj = �1 − Kei
t��1 − p�E + pG� �A16�

and

Qa � � 1

N�1 − p� 

j�Sa

ei�j� = � 1

N�1 − p� 

j�Sa

1 + uj

	1 + uj	
ei�j�

� �1

2
�E − F�� , �A17�

where higher order terms are ignored, we arrive at

	Z	
Qa

� 2�1 − K� �1 − p�E + pG

E − F
� � �a. �A18�

In the swing-by process, the system approaches an incoher-
ent state sufficiently closely and eventually leaves it along
the unstable direction found above. Therefore, in the latter
stage, we may consider �E ,F ,G� as proportional to the ei-
genvector corresponding to the eigenvalue �+. We thus ob-
tain from Eqs. �A7�–�A9�

F

E
=

− �1 − K��1 − ic2�
�+ + �1 − K� + i


, �A19�

G

E
=

K�1 − p�
�+ + b + K�1 − p� + i


. �A20�

Substitution of these into Eq. �A18� leads to the formula of
K�a �54� in which � should read �+ in the notation here. By
taking the limit p→0, we obtain an expression of � which
can be shown to be equivalent to Eq. �52�.
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